

5. Disc1: Low Lead DZR Brass ASTM C27453 6. Disc O-Ring1: EPDM Perox

7. Disc Stem: Low Lead DZR Brass ASTM C27453

8. Stem O-Ring: EPDM Perox

9. Union¹: Low Lead DZR Brass ASTM C27453

10. Stem: Brass ASTM B124 C37700

11. Bonnet: Low Lead DZR Brass ASTM C27453

12. Stop Spring Ring: Spring Steel

13. Screw: Steel

14. Handwheel: ABS (Blue) 15. Nut: Zinc Plated Steel

16. Test Point: DZR Brass² ASTM C35330

¹Only on 1¹/₄", 1¹/₂" and 2"

² Test points with EPDM gaskets and polypropylene ties

Features

Fixed orifice low lead DZR brass double regulating valve. Intended for HVAC and domestic water use. Threaded F/F (ASME B1.20.1 - NPT) or solder joint ends (ASME B16.22). Design according to BS7350. Tolerance on nominal C_{vs} +3% (test according to BS7350). 300 WOG (Maximum 300psi up to 160°F. Maximum 150psi at 260°F.)

Available on following versions:

MBV-T-9517AB, threaded ends, with test points

MBV-S-9519AB, solder joint ends, with test points

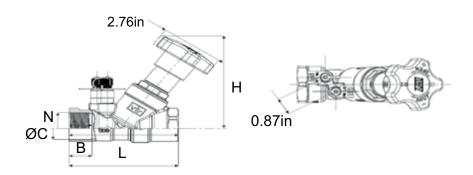
Working Conditions:

 Water (15°F to 260°F) below 32°F only for water with added anti-freezing fluids over 212°F only for water with added anti-boiling fluids

Material Specifications

1. Venturi Insert: Low Lead DZR Brass ASTM C27453

2. Body: Low Lead DZR Brass ASTM C27453


3. Balancing Cone: Low Lead DZR Brass ASTM C27453

4. Gasket Disc: PTFE

PROJECT INFORMATION	APPROVAL STAMP
Project:	Approved
Address:	Approved as noted
Contractor:	Not approved
Engineer:	Remarks:
Submittal Date:	
Notes 1:	
Notes 2:	

Fixed Orifice Double Regulating Low Lead Valves

Valve Size	N	øC¹	Н	L ²	B^2	Approx. Wt. ² Each	Flow Range
In./mm	In./mm	In./mm	In./mm	In./mm	In./mm	Lbs./Kg	GPM
U-1/2	1/2 - 14	0.627-0.631	4.06	3.46/3.74	0.71/0.55	1.23/1.16	0.27-0.71
15		15.93-16.03	103.1	87.9/95.0	18.0/140	0.56/0.53	_
L- 1/2	1/2 - 14	0.627-0.631	4.06	3.46/3.74	0.71/0.55	1.23/1.16	0.49-1.17
15		15.93-16.03	103.1	87.9/95.0	18.0/140	0.56/0.53	_
1/2	1/2 - 14	0.627-0.631	4.06	3.46/3.74	0.71/0.55	1.23/1.16	0.98-2.35 ³
15	_	15.93-16.03	103.1	87.9/95.0	18.0/140	0.56/0.53	_
3/4	3/4-14	0.877-0.881	4.06	3.78/4.18	0.75/0.76	1.43/1.34	2.19-5.15 ³
20	_	22.28-22.38	103.1	96.0/106.2	19.1/19.3	0.65/0.61	_
1	1 - 11.5	1.128-1.131	4.06	3.94/4.57	0.89/0.92	1.73/1.55	4.09-9.56 ³
25	_	28.65-28.73	103.1	100.1/116.1	22.6/23.4	0.78/0.70	-
11/4	11/4 - 11.5	1.378-1.381	4.06	4.63/5.28	0.98/0.98	2.78/2.53	8.56-19.81 ³
32	_	35.00-35.08	103.1	117.6/134.1	24.9/27.9	1.26/1.15	_
11/2	1½-11.5	1.628-1.632	4.06	5.00/5.90	0.98/1.10	3.50/3.16	12.84-29.80
40		41.35-41.45	103.1	127.0/149.9	24.9/27.9	1.59/1.43	_
2	2 - 11.5	2.128-2.132	4.06	5.72/6.73	1.15/1.35	4.80/4.46	24.09-55.63
50	_	54.05-54.15	103.1	145.3/170.9	29.2/34.3	2.18/2.02	_

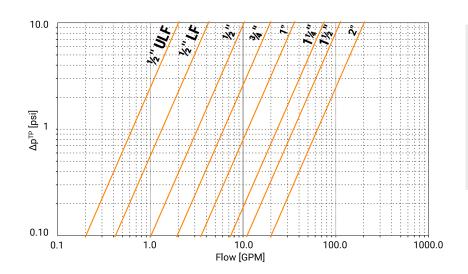
¹Tolerance field

² Threaded ends/soldering ends

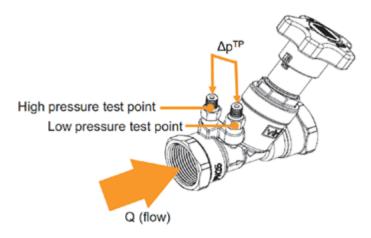
If used with measuring manometers different from those proposed by Anvil–RWV, please verify that sensibility of the measuring device is compatible with indicated minimum.

in 💆 🗖

asc-es.com


Building connections that last™

³ Dimension with VIR actuators, for more details please consult specific technical sheet


⁴ Suggested flow range applicability (BS7350)

Flow Diagram

$\frac{1}{2}$ " ULF C_{vs} venturi 0.64
$^{1\!\!/_{\!2}}$ " $_{LF}$ C $_{vs}$ venturi 1.33
$^{1\!\!/_{\!\!2}"}$
$^{3}\!4$ " C $_{ m vs}$ venturi 6.16
1"C _{vs} venturi 11.24
1%"C _{vs} venturi 23.41
$1\frac{1}{2}$ "C _{vs} venturi 34.95
2"C _{vs} venturi 63.67

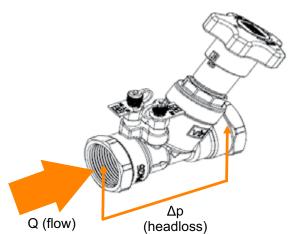
$$Q = C_{vs}^{venturi} \cdot \sqrt{\Delta p^{TP}}$$

Q = flow rate in GPM

 Δp = differential pressure signal in psi generated through the pressure test points

C_{vs} = flow coefficient

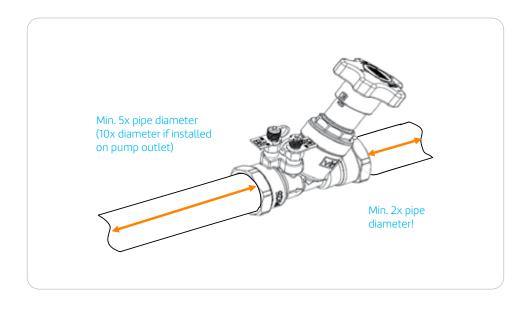
asc-es.com


Building connections that last™

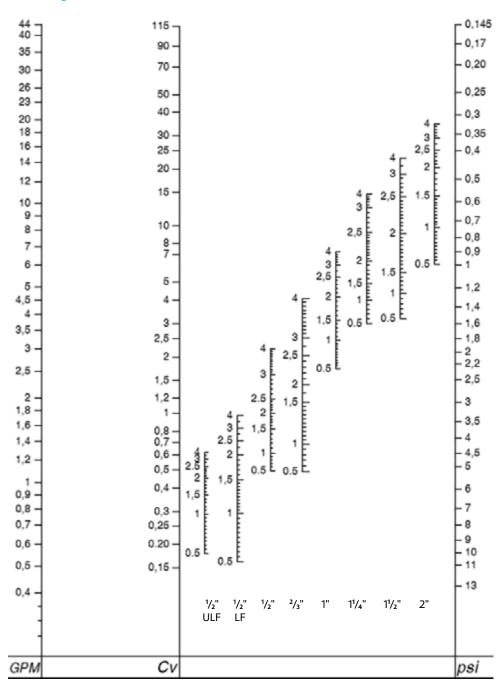
Headloss

$$\Delta p = \left(\frac{Q}{C_V}\right)^2$$

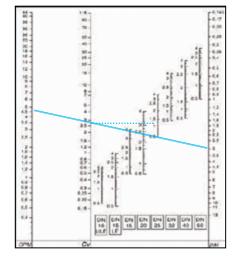
Formula linking flow Q (in GPM) and theoretical valve headloss (pressure drop) Δp (in psi). C_V depends on handwheel position as indicated in table.


Headloss Calculation

Handwheel	C_{V} (GPM/psi ^{0.5})								
Position	U-1/2"	L-1/2"	1/2"	3/4"	1"	11/4"	11/2"	2"	
-	GPM/psi	GPM/psi	GPM/psi	GPM/psi	GPM/psi	GPM/psi	GPM/psi	GPM/ps	
0.5	0.177	0.160	0.474	0.474	1.70	2.96	3.14	6.20	
0.7	0.206	0.186	0.474	0.543	2.00	3.38	3.61	7.56	
1.0	0.283	0.287	0.613	0.671	2.42	3.95	4.27	9.65	
1.3	0.331	0.394	0.717	0.809	2.82	4.49	4.96	12.19	
1.5	0.355	0.440	0.809	0.902	3.12	4.83	5.57	14.30	
1.7	0.387	0.501	0.902	0.994	3.48	5.25	6.60	16.64	
2.0	0.445	0.586	0.994	1.12	4.13	6.27	8.99	20.17	
2.3	0.511	0.669	1.10	1.25	4.83	7.82	12.08	23.35	
2.5	0.517	0.696	1.18	1.39	5.28	9.16	14.21	25.12	
2.7	0.527	0.743	1.32	1.62	5.63	10.46	16.34	26.66	
3.0	0.563	0.828	1.60	2.24	6.09	12.21	18.89	28.72	
3.3	0.578	0.864	1.88	2.94	6.49	13.39	20.67	30.57	
3.5	0.594	0.891	2.03	3.39	6.64	13.94	21.54	31.72	
3.7	0.595	0.925	2.12	3.75	6.80	14.34	22.16	32.86	
4.0	0.603	0.953	2.19	4.06	7.10	14.50	22.65	34.36	
4.4	0.605	0.985	2.22	4.24	7.21	-	-	_	


Installation

To obtain the best performances valve must be installed on a pipe with its same nominal size preceded and followed by straight pipe lengths as per figure indications.



Presetting

Using diagram above, determine the presetting position of the valve with the given design flowrate and headloss:

- Draw a straight line joining design flowrate and design headloss;
- Determine design C_V value as intersection of drawn line and C_V axis;
- Draw a straight horizontal line from intersection previously identified and the specific valve size axis;
- 4. Intersection determines handwheel position to use for presetting.

In the example for a design flowrate of 5GPM and design Δp 3psi handwheel position of 1.35 is determined for a 1" valve.